
Journal o f  Statistical Physics, Vol. 53, Nos. 1/2, 1988 
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The applicability of Pad6 approximant techniques to solving the stochastic 
Liouville equation is discussed. The special case of an axially symmetric spin 
system undergoing isotropic Brownian motion is studied. Two types of expan- 
sions are explored which yield efficient algorithms for spectral simulations. 
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1. I N T R O D U C T I O N  

The technique of spin labeling has been widely used in various branches of 
physics to study the dynamical behavior of a molecule in a thermal 
environment such as in a liquid or liquid crystal structure. (1) Information 
about the rotational motion can be extracted from electron spin spec- 
troscopy via comparison of the experimental spectra with numerical 
simulations of theoretical models. (2) In these models the molecule is 
assumed to undergo thermal fluctuations due to the presence of the liquid. 
These fluctuations are described in terms of random variables, giving rise 
to the stochastic Liouville equation (SLE). (3,4) In the past the use of the 
SLE to treat the interaction of the spin-labeled molecule with the liquid has 
been highly successful. (2) The actual solution of the SLE in general can be 
found by inverting large matrices/3 7) This calls for fast and efficient 
algorithms, which enable spectral simulations to be carried out in practice. 
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Of the various methods used, the Lanczos algorithm (5'8~ proved to be 
the most efficient. Two related approaches (9'1~ have also been discussed in 
the literature. One, by Giordano er  al., (9~ is based on the application of 
memory function techniques and leads to a continued fraction solution of 
the SLE. The second approach, put forward by us, (1~ proposed the 
application of Pad6 approximant (PA) techniques. In this paper we present 
a comprehensive discussion of this. 

In the next section we briefly describe the SLE for the case of an 
axially symmetric molecule. The solution of the SLE is studied in Section 3 
using the PAs on the moments of the spectrum. As a result the unsaturated 
ESR frequency spectrum can be determined in an efficient way. Section 4 
deals with an alternative application of the PAs where the absorption is 
calculated for a fixed frequency. Although rather slow, it has the distinct 
advantage of a considerably faster convergence rate of the PAs. Moreover, 
it can also be used in the case of saturation such as occurring in ELDOR 
and saturation transfer ESR experiments. (~) In the last section some 
concluding remarks are made. 

2. F O R M U L A T I O N  OF THE P R O B L E M  

Consider a spin system in an external static magnetic field Ho 
undergoing a tumbling motion due to the presence of a liquid. As a typical 
example, let us consider the" case of an axially symmetric nitroxide system 
( I =  1, S = 1/2) characterized by a diagonal g and hyperfine tensor A. The 
principal axes of these two magnetic tensors coincide. Their orientation can 
be characterized by the Euler angles. For  a particular f2 the spin 
Hamiltonian is given by (2) 

~ ( ( 2 )  = -~ H o �9 9" S - 7e I" A" S - 7,,H o" I (1) 

The orientation f2 can be considered as a stochastic variable due to the 
interaction with the environment. Its time dependence is determined by a 
stationary Markov process, satisfying (1~4) 

8P(t'2, t ) /3 t  = - F o P ( O ,  t) (2) 

where P(s t) is the probability of finding the molecule with an orientation 
O. In view of Eqs. (1)-(2), the density matrix p(f2, t) for the spin system 
satisfies the SLE Ore'7) 

8p(g2, t)/Ot = - - i ~ p  (3) 
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where 5e is the stochastic Liouville operator. It is defined in the direct 
product space of the functions of the stochastic variables f2 and the space 
of the electron and nuclear spin operators. In terms of the spin 
Hamiltonian we have 

= ~ ( ( 2 )  x -  i(Fo + FR) (4) 

where FR is the spin relaxation operator describing relaxation processes 
other than the reorientational motion. We have here used the commutator  
superoperator notation J f ( f2 )x  = [Jf(f2),. . .].  Using linear response theory, 
we can express the unsaturated ESR intensity of the absorption ~4 as 
~4 = ][m{I(z)}, (7) with 

ICz) oc ( ~1 Ez-  ~ ]  , I'/ ') (5) 

It is a function of the sweep variable z = Ho - co/[Tel, with co the microwave 
frequency and 7e the electron gyromagnetic ratio. In Eq. (5), 15 u )  is the 
vector of the allowed spectral components. The molecule is assumed to 
undergo isotropic rotational Brownian motion characterized by a rotational 
diffusion constant D. For this case F~ is given by (2A2) 

Fo = -DL2/IYe] (6) 

where L is the angular momentum operator. It is now appropriate to 
choose in the s subspace the representation of Wigner.rotational matrices 

L @mn(f2). Let the azimuthal quantum numbers of the electron and nuclear 
spin be given by flk and vk, respectively. We may use as the basis set of 
states in the superspace 

�9 / 2L+  1 \  1/2 
iLvxu  > =   otat (7) 

to ,compute I(z). Here, the symbol 7 represents all the other quantum num- 
bers m, n, fix, and f12. In the high Ho field approximation, it is readily 
found using the axial symmetry that we have the selection rules for the 
operator 2 '  

m = V x - -  V 2 ,  L even 

while the electron spin quantum numbers are fixed, given by/31 = 1/2 and 
/32 = - 1 / 2  and n = 0 .  In the representation (7), F a is diagonal with 
elements 

( L'v'x v'2Y'l Fa tLvx v27 ) = D L(L  + 1) 
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The operator ~ reduces to an infinite matrix which has a banded struc- 
ture, as shown schematically in Fig. 1. The nondiagonal elements arise from 
the matrix elements of the spin operators. For  simplicity we assume that 
the spin relaxation operator FR is diagonal in the nuclear spin space and 
that it can be characterized by a relaxation time T2. In determining the 
ESR spectrum our major problem amounts to carrying out the matrix 
inversion needed in Eq. (5). This is done by truncating the matrix ~ at a 
sufficiently large value of L = L m. The result of such a spectral simulation is 
shown in Fig. 2. A typical value of Lm = 20 is sufficient to reproduce the 
exact result of the infinite-dimensional case within an acceptable accuracy. 

As the electronic gyromagnetic ratio 7e is considerably larger than the 
nuclear one 7n, we expect the nonsecular terms (12) in the spin Hamiltonian 
(1) to be effectively quenched. (1-6'12) Thus, no transitions within the nuclear 
spin system take place and for a given orientation f2 the spectrum will 
consist of three lines. However, the tumbling motion of the molecule 
modulates the spin Hamiltonian so that rather complex spectral shapes are 
observed as lines broaden substantially and superimpose. The detailed 

Fig. 1. Typical structure of the stochastic Liouville matrix. Each plus sign represents a non- 
zero element. 
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Fig. 2. (a) ESR absorption spectrum and (b) its first derivative of an axially symmetric 
( I =  1, S = 1/2) spin system as a function of the sweep variable z = H o -  o)/]~ Parameters: 
g11=2.0027, g• AI I=32G , A •  D = 6 . 2 x l 0 6 s e c  -~, T z = 2 . 1 8 x l 0 - ? s e c ,  
H 0 = 3200 G. 

spectral line shapes are in fact determined by the magnitude of the diffusion 
coefficient. Consequently, dynamical information can only be obtained 
from the experimental spectra from comparison with theoretical spectra 
simulated numerically. Since the numerical simulations have to be carried 
out many times, we need efficient methods to solve the Liouville equation. 
In the next section we discuss such a method. 

3. ITERATIVE SOLUTION OF THE SLE 

The construction of the solution to the SLE by straightforward ma'trix 
inversion is prohibitively time-consuming because of the large size of the 
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matrices involved. Consequently, attempts have been made to use iterative 
schemes. The SLE has the formal form 

R I~ )  = I ~u) (9) 

with R = z - 5 P  and where # has to be determined. For any given non- 
singular operator Q, we may rewrire Eq. (9) as 

I~ )  = K I ~ )  + I~/io) 

where the kernel is defined as 

and 

(10) 

On introducing the complex multiplicative parameter ~c into the kernel and 
carrying out the iteration implicit in Eq. (10), we find the Neumann series 
solution of Eq. (9). This yields the absorption spectrum as 

I'/'o> = Q 11~)  (12) 

such that 

I(z)= ~ ~c n (7q K n ]~o)  (13) 
n - - 0  

However, as the series solution (13) may not converge for ~c= 1, an 
analytic continuation in the variable is in general needed. In the case of a 
compact operator Q such as the case of a nonsingular matrix of finite 
dimension, the solution of Eq. (10) is meromorphic in the parameter ~c. 
Hence, the Pad6 approximant method (1~ should be especially suitable 
for carrying out this analytic continuation. 

The Pad6 approximant [ M / N ]  to a power series expansion of a 
function F(~c) is defined as 

[ M / N ] ( K ) = P M ( K ) / Q N ( K )  

F ( v c ) -  [ M/N](~c) = O ( K  M + N + I ) 

Here PM(~C) and PN(Is a r e  polynomials in ~c defined as 

P M(~c) = Po + Pl ~C + . . .  pMVC M 

Q N ( K )  = 1 + q l K +  �9 " ' q N  KN 

The coefficients {p} and {q} appearing in Eq. (16) 
uniquely from Eq. (14) on collecting equal powers of to. 

(14) 

(15) 

(16) 

are determined 

K = I - Q - 1 R  (11) 
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Let D be the dimension of the matrix K. Then it can immediately be 
seen that the [ D -  1/D] approximant corresponds to the exact solution of 
Eq. (10). The main virtue of the Pad6 method is now that in practice a 
considerably lower order of PA is required to reconstruct the solution of 
the set of linear equations. Since D 2 operations are needed to reconstruct 
the solution iteratively using Eq. (10), whereas D 3 operations are required 
if matrix inversion methods are used, we see that a substantial amount  of 
time can be saved using the above iteration schemes. 

4. THE 1/z EXPANSION 

Let us choose for the matrix Q = L,e and K = 1/z. The series solution 
for the absorption spectrum is then given by 

I(z)=z - l  ~ anz-" (17) 
n = 0  

where an = ( gtl 5~ t ~u). The coefficient an is the nth moment of I(z), since 

an = znI(z) dz (18) 

Our choice of the matrix Q greatly facilitates the calculation since the coef- 
ficients are not dependent on the sweep variable z. As a result the whole 
absorption spectrum can be readily determined once these coefficients have 
been calculated. We see from Eq. (17) that the Pad6 approximated solution 
is given by 

I(M'N)(z) = Z 1[MINI(z-I) (19) 

We note that formally I(M'N)(z) c a n  be seen as the [ M +  1/N](z 2) Pad6 
approximant to I(z). 

The evaluation of the Pad6 approximants is carried out by the 
application of recursive algorithms rather than a straightforward solution 
of Eq. (15). (13-1s) Two such algorithms, those due to Wynn and Baker, 
have been found by us to be particularly useful. The Wynn algorithm 
affords the calculation of [MINI for a fixed value of ~c[ = 1/z], while the 
Baker algorithm enables the explicit determination of the coefficients {p} 
and {q}. The latter algorithm is advantageous in our case for three reasons. 
First, Im{I(M'N)(z)} can now be computed over the entire spectral range by 
a simple evaluation of the polynomials PM(1/z) and QN(1/z). Second, it 
affords a direct evaluation of the experimental first derivative ESR spec- 
trum d/dz[I(z)] in closed form. Third, the explicit knowledge of the 
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polynomials PM(1/Z) and QN(1/z) allows the study of the distribution of 
poles and zeros of the Pad6 approximants. An inherent problem in the 
evaluation of Eq. (17) is the presence of a singularity at z = 0. However, as 
the experimental spectrum is determined by real values of z only, the 
difficulties can be overcome by introducing an imaginary origin shift 
z ~ z + it and A ~ A + ie in all the equations above. The consequences of 
such a shift will be discussed below. We note, furthermore, that the 
singularity at z = 0 is absent in the I N - l / N ]  Pad6 approximant to I(z) 
since 

pozN-l_bplz u 2+ "''PN-1 
(20) I(N I ' N ) ( z )  1 +qlZN--I + "''qN 

The above Pad6 sequence has been applied to determine the absorption 
spectrum shown in Fig. 2. A typical value of N =  20 is needed to reach 
convergence. The differentiation of the absorption spectrum I(M'N)(z) c a n  

be carried out numerically using cubic spline or other techniques. However, 
we have found it more convenient to evaluate the experimental signal in 
closed form from the coefficients {p} and {q} obtained via the Baker 
algorithm. It can be shown from Eqs. (16) and (19) that 

where 

di(m.U)(z ) zN_M_I[ I+M--NPM QNP~--PMQ'N~ (21) 
dz z QN Q2N A 

M M - - 1  

PM = ~ P,, zM-n, PM= Z (M--n)pn zM-n-1 
n - - O  n = 0  

N N - - 1  

QN = ~ q. ZN n, Q'N = ~ ( N -  n) q.z N n--1 
n = O  n - - O  

(22) 

and qo = 1. When M = N -  1, Eq. (21) simplifies to 

N I(N_I,N)(z ) QNP'N 1--PN 1QN ( 2 3 )  
dz Q2N 

Equation (23) has in fact been used in the evaluation of the experimental 
signal shown in Fig. 2. 

The function I(z) can be approximated by a hierarchy of Pad6 
approximants [M/N]. The question arises as to the most suitable or 
convenient choice for the implementation of the numerical calculations. 
We shall investigate this by considering the properties of I(M'N)(z) for z ~ 0. 
This approximant has the explicit form 

I(M,N)(z) = Z N- M--1F(M,N)(z ) (24) 
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and 
F(M'N)(z) = poZM + p l z M  - 1 + "' '  PM (25) 

zN ~_qlZN 1~_ "''qN 

It can be seen from Eq. (24) that we can impose poles or zeros of any order 
at z = 0  simply by varying the difference ( M - N ) .  These poles/zeros, 
however, tend to be compensated by F(M'N](z). This is illustrated by an 
analysis of the three approximants [ N -  1/N+ 1], I N -  1/N], and IN~N], 

I(N- 1,N+ 1)(Z ) : zF(N-- I ,N+ 1)(Z ) (26a) 

[(N--1,U)(z ) = F ( N -  1,N)(z ) ( 2 6 b )  

[(N'N)(z) = Z 1F(N'N)(z) (26c) 

The locations of the poles and zeros close to the real axis of z of the 
functions F (N 1,U+ I)(Z), F (u-  I 'N)(z),  and F(N'N)(z) a r e  shown in Fig. 3 for 
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Fig. 3. Distribution of ( x )  poles and (0) zeros near the real z axis of (a) F(24'26)(Z), 
(b) F(24'25)(2), and (c)F(25'z5)(Z). The model parameters are as given in Fig. 2 except for 
D =6.2 x 10 7 s-1. 
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N =  25. The figure shows that F(24"26)(z) possesses a pole at z ~ 0, which 
approximately compensates the zero imposed o n  I(24'26)(z), Eq. (26a). 
Similarly, F(2S.25)(z) possesses a zero at z ~ 0, which compensates the pole 
imposed on I(25'2S)(z), Eq. (26c). In marked contrast, F(Z4'25)(z) possesses 
neither a pole nor a zero at z = 0. As the locations of other poles and zeros 
are virtually identical for all the three cases considered, we choose the 
I (N-  I 'N)(z) approximant  for practical applications. It has also the proper 
asymptotic behavior for z ~ oe. 

The occurrence of pole/zero pairs in I (x I 'N)(z),  shown in Fig. 3, can 
be understood from the decomposition of the PA in partial fractions. On 
setting {2j} as the poles of I (N I'N)(z), we can write this approximant  as 

N 
I(U I ' N ) ( z ) :  2 mk/(Z--~k) (27 )  

k = l  

Here the weight factor Wk is the residue of I (N l'U)(z) at z = 2k, 

N 1 N 
Wk = Po F[ (z , -  2k) i-[' (2 , -  2k) (28) 

i=1 i=1 

where {zi} are the zeros of I (N- l'N)(z) and the prime indicates that i =  k is 
excluded from the product in the denominator. It can be seen from Eq. (28) 
that the proximity of a zero z i to a pole 2 k corresponds to a low-weight 
contribution of the corresponding complex Lorentzian to the lincshape 
function (27). 

The calculations of the ESR spectra are performed with a sweep 
variable z = H o -cO/[Tel, implying an origin shift to the approximate center 

I I I l I 
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ziG] 
Fig. 4. Value of N required for I (N- l,N)(z) to reach convergence, as a function of the spectral 
position z (cf. Fig. 2). Criterion (see text): A x l 0 0 % = (  )5%;  (--) 1%; ( .- .)  0.1%. 
Parameters are as in Fig. 3. 



Stochastic Liouville Equation 119 

of the spectrum at co = IYel g0.  We shall now consider the convergence of 
the calculations for different parts of the spectrum, i.e., for different values 
of z, using the Wynn algorithm. The convergence behavior of I (N- I'N)(z) is 
shown in Fig. 4. Convergence is assumed if for two consecutive values of N 
the following condition is met: 

I m { I  (N,N+ 1)(a ) -- I (N I 'N)(z) } 
im  {1(24,25)(0) } < A  (29) 

Interestingly, we find that convergence occurs most slowly in the region 
z ~ 0 .  As power series in 1/z are involved in the construction of Pad6 
approximants to I(z), it is now interesting to consider whether an origin 
shift from z = 0 to z = - ~  might influence the convergence. With this shift 
Eq. (17) now reads 

I ( z ) = ( z + 6 ) - '  ~ a , ( f i ) (z+6)  n (30) 
n--0 

with a , ( 6 ) =  (T[  ( A + ~ )  n IT) .  However, it is known that the diagonal 
IN/N] Pad6 approximants are invariant to the bilinear transformations 
which change Eq. (17) to Eq. (30). (1~) Consequently, I (N I'N)(z), which is 
formally the [N/N] approximant to I(z), is invariant under the origin shift 
and no acceleration of convergence can be obtained. This conclusion, 
however, does not hold for the other approximants I(M'NI(z) with 
M E N - 1 .  

The result presented here shows that I {N- i'm(z) is also invariant to 
the transformation z--+ z + ie considered above as a means of avoiding 
singularities. However, it provides a justification for including a Lorentzian 
linewidth O'L=(lye l T2) -1 in the calculations through the simple sub- 
stitution z --+ z + ia t  in I (N- I'N)(z). This can be readily understood from the 
fact that this intrinsic lineshape enters the matrix 5~', Eq. (5), as a scalar 
quantity --ir SO that we have from Eq. (17) 

I(z)=(z+iaL) ' ~ an(O)(z+iaL) -n (31) 
n=O 

where the moments a,(0) are those obtained from the lineshape calculation 
with aL = 0. 

We close this section by noting that the convergence of the Pad6 
sequence may depend on the type of matrix elements studied. Let the 
nuclear spin degrees of freedom of the state [ T )  be characterized by the 
quantum numbers vj. The moment expansion, Eq. (17) of I(z), can be 
expressed as 

I(z) = 1/z ~ ~ a,(j)(1/z)" (32) 
n j 
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Fig. 5. Effect of summing the vector components prior to the calculation of Im{I (N I'N)(0)} 
(global approach), compared to a separate treatment. (0) Global approach; ( + )  separate; 
units of y axis are arbitrary. Parameters are as given in Fig. 3. 

where 

a~ j )=  ( ~ [ v j ) ( v j l  5e" I ~ )  (33) 

The evaluation of Eq. (32) can be carried out in two ways. The first is 
the global approach in which the summation over the index j is performed 
prior to the construction of the Pad6 approximant. Alternatively, the order 
of summation is interchanged and a Pad6 approximant is obtained 
separately for each value of j .  However, it turns out that in calculations of 
ESR spectra in the slow motion regime the difference between the two 
approaches is marginal, as shown in Fig. 5. It can be seen that the main 
difference arises only in the way the convergence is achieved. 

5. A P P R O X I M A N T S  A T  A F I X E D  S W E E P  V A R I A B L E  

The rate of convergence of the sequence of Pad6 approximants 
depends on the specific choice of the matrix Q, Eqs. (11), (12). In practice, 
Q should be chosen such that it resembles R to a certain extent, while on 
the other hand the computation of Q-1 should be substantially easier than 
that of R 1. In this section we will explore a procedure which in principle 
can also be used for the case of saturation. (1'11'16) In that case the sweep 
variable z enters in a more complicated way as in Eq. (5), so that the 
dependence, in z cannot be separated out in an explicit way. 

Given the considerations above, it is natural to take as an alternative 
choice Q = z -- 5('D, where YD is the diagonal part of the Liouville operator 
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in the representation (3). Also in this case we may perform a shift 5 in the 
variable z. The series solution then becomes 

( Z - - o ~ )  1 = (Z -]- ~ - -  ~,~OD) -- 1 

x ~ ( z + 6 - ~ D )  ' ( 5 - s 1 7 6  " (34) 
/ I = 0  

We have compared the rate of convergence of the PAs based on Eq. (34) 
with the PAs on the 1/z expansion. Since in calculating high-order PAs 
roundoff errors may lead to unreliable results, it is clear that any gain we 
obtain in the rate of convergence of the Pad6 sequence by the appropriate 
choice of the operator  Q is important.  The relative deviation AN of the 
[N-1/N] PA as a function of N using the 1/z expansion is shown in 
Fig. 6. It is defined as 

[m(i(N 1 , N )  / e x a c t )  

N :  I-;-022)- (35) 

The sweep variable z has been taken to be zero, while the angular momen- 
tum has been truncated at Lm = 20 and Lm -- 30. The I . . . .  t was obtained by 
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N 

Fig. 6. Dependence of the relative deviation of the IN--  1/N] approximant on N, using the 
t/z expansion for ( - - )  Lm=20 and (--) Lm= 30. Parameters as given in Fig. 2. 
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exact diagonalization of L~, where L m = 30 was used. A striking feature is 
the fact that the calculation with L m =- 30 converges more slowly than that 
with L m = 2 0 ,  but both give satisfactory results. Thus, increasing L m from 
20 to 30 yields no improvement of the final result, but it does slow down 
the convergence. The results of similar calculations, but now employing 
Eq. (34), are given in Fig. 7. The behavior of A N for L m = 30 is virtually 
indistinguishable from that for Lm=20.  Furthermore, convergence is 
considerably faster than found for the case of the 1/z expansion. 

The slower convergence of the Pad6 sequence with increasing L m in 
the case of the 1/z expansion can be understood by considering the eigen- 
values 2j of the kernel of Eq. (10). These eigenvalues lead to singularities in 
the absorption function d .  For  increasing values of Lm, more eigenvalues 
appear, whose increasing imaginary parts are determined by the operator 
Fa .  To a good approximation they are given by 2j~- iL(L+ 1)D/17el. 
Although the contribution to I(z) from the eigenstates with large )~j can 

i I i I 
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- 2  

g-4 
0 

~ ~ ~ �9 ~ ".o. 

. . ik 

- 8  

-I00 10 20 
N 

Fig. 7. The same as Fig. 6, but now based on the expansion (34) with 6 = I0i O for (-.-) 
L m =  16, (--) Lm=20, and (- -) L,,, =30. The results for L m = 2 0  and 30 coincide except for a 
small region near N= 20. Parameters as given in Fig. 2. 
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safely be neglected, the Pad6 sequence tends to include these eigenvalues as 
poles with appropriate weight. As a result, the singularities near the real 
z axis are represented less reliably, so that higher order approximants are 
needed to reach convergence. In marked contrast, these large eigenvalues 
are not present on taking Q = z - 5~ so that only a limited range of eigen- 
values 2j need to be represented by the PA. Consequently, we do not 
now expect the convergence rate of the Pad6 sequence to detoriate with 
increasing Lm, as is indeed borne out in the actual calculations. 

The approach discussed in this section suffers from the drawback that 
the iterative process must be repeated for every field point in the 
experimental spectrum. Thus, it will not provide as efficient an algorithm as 
that discussed in Section 4 and in ref. 5 using the Lanczos method. 
Nevertheless, we note that a similar formulation of the problem was adop- 
ted by Vasavada eta/. (17) in their modification of the Lanczos algorithm. 
The importance of this method, however, is to be found in future 
applications to the numerical simulations of ESR experiments in the 
presence of a saturating microwave field, where no efficient algorithms 
currently exist. 

5. CONCLUSIONS 

We have here presented the main ingredients relevant for the 
application of the Pad6 approximation technique to the calculation of ESR 
spectra. We have shown on the basis of model calculations that the techni- 
que overcomes the problems of divergence inherent in moment expansion 
methods and provides a viable and efficient algorithm for the simulation of 
ESR spectra in the slow motion regime. We have further demonstrated that 
the Pad6 approximant I (N-I'N~(z) produces a reliable approximation to 
I(z), the lineshape function. Importantly, this appoximant is convenient to 
implement in practical computations. It has further the remarkable 
property that it is invariant to the change of variable z ~ z  +6. This 
provides a simple way of including a homogeneous linewidth in the 
calculations. 

An iterative scheme applicable to nonlinear ESR has been shown to 
give interesting results when applied to linear ESR. At the cost of having to 
perform the complete calculation for each value of the sweep variable 
separately, convergence was found to be improved considerably, so that it 
compares favorably to the Lanczos method. This faster convergence can be 
ascribed to the removal of the singularities arising from the Markovian 
operator Fa. In particular, for the case of simulations of the stochastic 
Liouville equation for saturation-type experiments the Pad6 technique 
should be a powerful tool. 
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